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Ground States of VBS Models on Cayley Trees
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We study the thermodynamic limit of the ground states of VBS models on a
Cayley tree. We prove uniqueness for coordination numbers z<4 and the
occurrence of Néel order for z > 5. Our main technical tool is a transfer matrix
description of VBS states.
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INTRODUCTION

The main purpose of this paper is to study in detail the thermodynamic
limit of the valence-bond-solid models (VBS models) on a Cayley tree as
defined in ref 1. For concreteness let us immediately introduce the
Hamiltonians, before going to more technical matters. For any z>2 we
consider the Cayley tree T? with coordination number z (for z=2 we
recover Z, the one-dimensional lattice). To each site xe T° we assign a
quantum spin variable with spin s=z/2. Let <{x, y> denote a pair of
nearest neighbors in the tree and Pﬁf)y the orthogonal projection onto the
subspace in C**'® C**!, located at the sites x and y, which corresponds
to maximal total spin, ie., z=2z/2 + z/2. The formal Hamiltonian H of our
model is then defined as

H= Y P, (0.1)

<692
This Hamiltonian is a positive operator (being the sum of positive terms),
and it has the peculiar property of possessing a ground state with vanishing
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energy. This is the starting point of the analysis of any VBS model. Using
an extension of a technique introduced in ref 7 for treating one-dimen-
sional VBS models, and also invoking an argument of ref. 2, we can con-
struct an infinite-volume ground state w of the Hamiltonian {0.1), with the
following property: for any finite volume A€ T’ and any finite-volume
ground state #, of the local Hamiltonian H, =3, ,sc 4 Pﬁf’)y, there exists
a constant C >0 such that

74(A*4) < Co(A*A)

for any observable 4 in the volume A. In other terms: the local restriction
w4 of w is a convex combination in which all ground states of the volume
A appear.

We are now ready to formulate the problem we want to analyze in this
paper: Determine all states @, of the infinite tree which are weak limits of
the following type:

wo(4)=w-lim w,, (4)

where the A, are a sequence of increasing finite volumes in the tree (even-
tually covering all of it) and the b, represent a specification of the state of
the spins at the border of 4,, i.c., a boundary condition.

The results of ref. 1 concerning this question are the following: taking
only homogeneous product boundary conditions (i.e., fixing all the spins of
the boundary in one and the same direction), one obtains a unique limit
in the cases z=2 and z=3 and nonuniqueness for z>35. Numerical
evidence for uniqueness in the case z=4 was found.

Here we extend these results in the following way: we consider
arbitrary nonhomogeneous boundary conditions of tensor product type
and prove uniqueness in the cases z<4. Furthermore, in the case of
homogeneous product boundary conditions and z > 5, we find all possible
limits.

The paper is organized as follows:

Section 1. We introduce a construction of states for quantum spin
systems on an infinite Cayley tree. The construction contains the valence-
bond-solid (VBS) states, which are exact ground states of the class of
models under consideration. The construction we use is a generalization of
the so-called finitely correlated states which were analyzed in ref. 7. The
term “finitely correlated” refers to a fundamental property of such states:
the space of functionals obtained by conditioning on the “left” half of the
system is finite dimensional. As we do not intend here to study such a class
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of states on a tree in its full generality, we will still use the name VBS state.
We will study in particular how these states depend on boundary condi-
tions and obtain a transfer matrix technique which appears to be more
effective than the VBS formalism as used in ref. 1, especially to determine
questions like symmetry breaking in the thermodynamic limit.

Section 2. Here we make the ideas of Section 1 concrete by
introducing the “master” ground state for the VBS models (0.1), ie., we
construct the ground state w which is a mixture of all possible ground
states. It is this state that we are going to decompose using boundary
conditions of a specific type.

Section 3. In this section we prove unigueness in the cases z < 4.
Section 4. This section is devoted to the analysis of the case z> 5.

Section 5. To obtain the explicit expressions for the states in the
thermodynamic limit from the results of Sections 3 and 4, an additional
equation has to be solved. The solution is needed, e.g., for computing the
exact value of the Néel order parameter in cases of nonuniqueness. It is
then also straightforward to obtain the spin-spin correlation function of
the model.

Appendix. In the Appendix useful formulas which arise in the
representation theory of SU(2) are collected.

1. CONSTRUCTION OF VBS STATES ON CAYLEY TREES

Let z>2 be an integer and consider the Cayley tree T° with coordina-
tion number z (T7 is the unique homogeneous graph with coordination
number z and no loops; see Fig. 1). By cutting one bond, one divides the
tree into two disconnected parts, the branches (sometimes called rooted
trees), which are isomorphic with one another. Sometimes one removes a
site and thus obtains z equivalent branches. We will mostly work with only
one of the parts and call it T7 . We call the site of T* which belonged to
the broken bond the origin (or the root) of the tree.

level 3
level 2
level 1

level O

Fig. 1. The first three levels of the branch T7 with z=3.
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Useful coordinates on the positive branch T7, are given by
T2 = {(ig, i) IneN e {l,,z—1}for 1<k <n}u {(0)}

(0) constitutes level O of the tree and the sites (iy,.., i,) form level n,
containing (z—1)" sites. If xe T%, x= (iy,..., i), we define N(x)=n to be
the level of x.

T? acts as a semigroup of translations on itself (non-Abelian for
zz23): deﬁne the translations 7,

.....

i,,)(jl’"-: Jm) = (ila-"o ln) Vv (]1 9eeey ]m) = (ll Iy im jl’"'s Jm)

and of course
(i1>---s Zn) Vv (0) = (0) v (ila'", ln) = (il’"-: Zn)

such that 7, =id.
The “rotations” of T are generated by the following set of actions of
the symmetric group of {1,..,z—1}, % _,: for 6 € % _, define

m5)(0)=(0)
n&g))(lu ] m)""(o-(ll) 12’ alm)

for all m> 1. For n>1 and any element (j,,..., j,) of the tree we define a

rotation nﬁj) ..... , at the point (jj,..., j,) by: for every point y of the form

r(]l ----- Jn)(x)

te)

(11 ,,,,, /,,)(y) T(j[ ..... jn)(n(o)(x)) (11)
and all other points of T7_ are left invariant by ={7) . Tt is then obvious
that

(o) = (o)
TGt ) © e ) = Tt ) © T (0)

For all xeT?, and neN, we define a finite volume (x,n)cT? as
follows:

(x, )= 1,0, n) = {t,(») | y€ (0, n)} (12)

where
(0,n)y={yeT? | N(y)<n}

with N(y) the level to which y belongs. We call a finite volume of the type
(x, n) a triangle in the tree. This local structure is extended to the whole
tree by taking as the origin an arbitrary site xe T~
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In any site xe T® we now consider a copy «, of a finite-dimensional
C*-algebra «/ with unit. &/, ,, is then defined by

VQ{(X.H) = ® "Q{y

ye(x,n)

and the full algebra .. of the tree is obtained in the usual way by an
inductive limit"'®

A = U Ay

xeTihnelN

In this paper we will only be concerned with the case where the one-site
algebra is the algebra .#, of complex d x d matrices.

We will first give an explicit formula for a local VBS state @ on a finite
volume of the type (0, n). We consider therefore a linear map [,

E S®(®RB) >R

where # is some auxiliary finite-dimensional C*-algebra with unit element.
The map E will play a role similar to that of the transition matrix in the
context of classical Markov processes. Clearly, it must possess specific
positivity properties. The natural notion of positivity here is that of com-
plete positivity.!®) This positivity is preserved under tensoring and com-
position. As we will restrict our attention to matrix algebras, all completely
positive maps P from a matrix algebra .4, into .4, are of the type

k
P(X)=Y VFXV,

i=1

where the V; are linear maps from C, into C,. Besides this positivity
requirement, we will also impose that P be unity preserving; in terms of the
V,; this means that 3, V*V,=1,. In fact, we will only need to consider
the case where P is defined by a single V. Clearly, P will then be unity
preserving iff V' is an isometry.

Define for all neN, the nth-level algebras .« and 2 by

A= Q A, B"= Q 4.

x,N(x)=n x,N(x)=n
For all Xe o/ we define

E,: B¢~V 3 YE(Y)=HX®Y)

822/66/3-4-17
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and furthermore we put E{’=E, and foralln>1 and X= ®, yuyon X< €
/™ and Y of the form Y=Q , v,)=n ¥,» Y, €B®C" Y, we have

E®: 80+D 5 3% Y [E&’,”(Y)z( ® [ES?X’) (Y)
x,N(x)=n
We then extend this map linearly to general Xe .o/ and Ye £+, We
also define

B =M (1.3)

where 1 is the unit element of ..

With boundary conditions for the volume (0, n) we mean a positive
functional p ,, of % and a positive element b, € Z"*". For any such
boundary condition we define a state of .2, ,, by the linear extension of the
following formula: for all X, e %, 0<k <n,

Do, Xo@X,® --- ®Xn)=P(o,n)(Eg?0)°[E%)° o EP(b,m)) (L4)

The complete positivity of E guarantees the positivity of the functional: as
the set of completely positive maps is closed under taking tensor products
and composition of maps, all the maps E@o ... o E®™ are completely
positive; together with the positivity of the boundary conditions, this
implies the positivity of the functional w. If the boundary conditions are
chosen such that w(1)=1, we bave defined a state of .+, ,). A state @ on
the volume (x, n) can then be obtained by applying a suitable translation
and using boundary conditions (p,. ,;» b(x.»))-
It is obvious that two sets of “boundary conditions”

(p(x,n)> b(x,n)) and (péx,n)a ;x,n))

normalized such that both define a state of &/, ,,, and related by a positive
constant / as follows

-1
pl(x,n)z'lp(x,n)’ b/(x,n)=j~ b(x,n)

define the same state. So we do not have to distinguish between them.

To obtain states w of the infinite-volume tree, one needs sets of
boundary conditions {(p(c . Pxmy) | X€T?, neNy} which satisfy the
compatibility conditions

if (x,n)c(y, m), then @, ) | = Ppn (1.5)

Indeed, if (1.5) is satisfied, then there exists a unique state @ on &/ . such
that for all x and n, 0, =w |4, In general, compatibility conditions
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impose strong constraints on the construction of correlation functions. It is,
however, a particular merit of the VBS construction, as presented in (1.4),
that one is always able to find boundary conditions that guarantee com-
patibility. In the sequel we will only consider boundary conditions that are
simple tensor products, ie., each b, is a simple tensor product of
elements of 4. This kind of boundary condition is exactly equivalent to
fixing the state of the spins (of the system itself) at the boundary of the
volume. Moreover, we will take the boundary conditions local in the
following sense:

Py =Pum=p, forall n,m=0 (1.6)
biemy=biyv - 1)® - by 1m0
= ® b(x v »,0) = ® cx vy (17)
»iN(y)=n wN(y)=n

This means that the boundary conditions can be attached to the sites of the
tree. Therefore we call such boundary conditions {(p., c,)|xe T} local
boundary conditions. In this situation we have the following theorem,
which provides us with sufficient conditions for compatibility.

Theorem 1.1. For all xeT? let p.,, be a state of # and
¢, a positive element of %. Consider the local boundary condition
{(px> cx) | xeT?} as described in (1.6)-(1.7); then formula (1.4) defines
the local restrictions of a unique state w on the tree, e, ® |, ., = O n)>
if the following three conditions are satisfied:

(1) pule)=1forall xe T
(11) E(n)(b(x,n)) = b(x,n/ 1) SOy = E(cx v (1) ® e ® Cxv (z— 1))'
(iii) Forall Ye%, and k=1,..,z—1,
pX(E(cxv(l)® ®cxv(k—l)® Y®va(k+l)® “'cxv(z——l)))szv(k)(Y)

Proof. Let (x,n) and (y,m) be two triangles in T? such that

(y, m) < (x, n). We have to show that
O ) |ty = D ()

It is easy to see that it is sufficient to consider the following two situations:

. x=y,n=m+1.
2. n=m+1, y=xv (k), for some 1 <k<z—-1.

In the case 1 one applies (ii). In the case 2 one applies (iii). Then (i)
guarantees the normalization of the state. |
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2. THE MODEL AND MAIN RESULTS

On the Cayley tree T~ with coordination number z > 2, we consider a
spin-s model with s=z/2. So «=.#,,. The (z+ 1)-dimensional
irreducible representation of SU(2) on C**' is denoted by D,,. Its gener-
ators are denoted by S* S”, S° For any two half-integers s,, s, € iN the
representation D, ® D, decomposes according to the Clebsch-Gordan
series:

DS;®D52;DI31~S2I®DIS1732|+1 @DS1+sz

We denote by P’ the orthogonal projection onto the spin-z subspace of
C**'®C**'. The bonds of the tree arc the nearest neighbor pairs of the
form {x,xv (k)}, 1<k<z—1, and we write P{), , for the spin-z
projection located at the bond {x, x v (k)}.

The following SU(2)-invariant Hamiltonian with nearest neighbor
interaction was first introduced in ref. 1. It is of exactly the same type as in
the one-dimensional VBS models and therefore much of the analysis is
similar to that developed in ref. 7. For all xe T%, n>1,

z—1
H(x,n) = Z Z P;Z)y v (k) (2-1)

yel(x,n—1) k=1

where (x, n) is the triangle defined in (1.2).

Using formula (1.4), we now define a set of positive functionals of the
local algebras .o, .. Take # = .4, and b, ,, an arbitrary positive element
of #"+Y and p, a positive functional of #. As in the construction of the
ground states of the one-dimensional VBS models in ref. 6, we define E with
the aid of an isometry. It follows from the Clebsch-Gordan series that
there exists an up to a phase unique isometry V: C? - C* "' ® (® C*)E~ Y
satisfying

D.n(8)®(®D () ' V=VDs(g) forall geSU(2)

and
V*V=1e .4,

Then one defines for all Xe #, ., and Ye(®.4,)" '
EX®Y)=V*X® YV (2.2)

With these ingredients we can describe the finite-volume ground states of
the Hamiltonians (2.1).

Theorem 2.1. (i) All the local states w, ,,, constructed with the
completely positive map E (2.2) and arbitrary boundary conditions, are
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ground states of (2.1); indeed, for all ye(x,n—1)and all k=1,..,z— 1, we
have that

w(x,n)(Pif)y vy =0

(i1) All ground states of H, ,, defined in (2.1) are contained in the
face generated by the set of all states w, ,, constructed with the completely
positive map [ and arbitrary boundary conditions.

Proof. This is a mere application of Theorem 2.1 of ref. 2. |

The interesting thing now is to determine the infinite-volume ground
states of the models. For this to make sense, on¢ has to define first what
exactly the infinite-volume model is and also what is meant by ground
state. There are at least the following four possibilities:

(i) A ground state is a state of &7 such that for all xe T* and all
k=1,.,z—1, o(P? )=0.

x,x v (k)

(il) A ground state is a weak limit of the form

w(X) = lim o)

where for the finite volumes A (forming an net increasing to T7), w, is a
ground state of the corresponding finite-volume Hamiltonian, and X is any
local observable.

(iii) A ground state is weak limit as in (ii), but where the states
w, are now states of the local algebra ./, with minimal energy for
Hamiltonians of the form

Hy= Y PO +Y,,

bon
bonds in 4
where Y;, is a self-adjoint element in the algebra of the boundary sites
of A.
(iv) A ground state is a state of the infinite-volume algebra which
satisfies for any local observable X the inequality

hm CD()‘/*[ll(x,n)s‘X':I)ZO

(x,n)1T*

where the H|, ,, are defined in (2.1).

The Cayley tree is a pathological lattice in the sense that it is not at
all clear that even the energy density is the same for all ground states in the
sense of (iii) or (iv). This is due to the fact that for any finite volume the
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number of boundary sites is larger than the number of interior sites (see,
e.g., the discussions in refs. 3, 5, and 9). This is a good reason to prefer (i)
or (ii) as a definition of ground state. In fact, one can show that for the
models under consideration the definitions (i) and (ii) are equivalent.

As mentioned earlier, we will restrict the class of boundary conditions
in the following sense: we will consider local boundary conditions of the
tensor product type [see Eqgs. (1.6) and (1.7)]. Such local boundary condi-
tions are of the form

b(x,n): ® vay (23)

wN(y)=n

where for all x, yeT?, 0+#c,, , is a positive 2 x 2 matrix. If the ¢, depend
only on the level N(x) of x, we will call the boundary conditions
homogeneous. It should be remarked that the notion of homogeneity is
defined in terms of the levels and that the notion of level itself depends on
the orientation of the branch in the trec and the choice of the root. It can
be seen that homogeneous boundary conditions of periodicity two, ie.,
only depending on the parity of the level, are consistent with any choice of
the root and branch orientation. The conditions of Theorem 1.1 now are as
follows:

(i) pile)=1 forall xeT*® (24)

(11) Cx= E(Cx v (1)® T ®cx v (zfl)) (25)
(iii) For 1<k<z—1,forall ye4,

PX(E(CX vin® By (k- ® Y®va(k+1)® Tl (2_1)))=va(k)(Y)
(2.6)

At this point we remark that in the usual setup of the VBS construc-
tion (see, e.g., ref. 1), where one works with a set of vectors 2, z, the most
general boundary conditions one naturally considers are exactly the ones
we have introduced here.

Next we show that for the models under consideration there is at least
one solution of (2.4)-(2.6).

Proposition 2.2. Define ¢,=1e.#, and p (Y)=3iTrY, Ye.4,.
Then Eqgs. (2.4)—(2.6) are satisfied, and therefore they define an infinite-
volume ground state of (2.1) in the above sense.

Proof. E is defined with an isometry V, so it is unity preserving and
(2.5) is automatically satisfied. (2.4) is also obvious. To check (2.6), we use
the intertwining property of V:
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TrTHI® - QY® - ®1)
=TrEHY®I® - ®1)

=|  deTDI(g) VHY®T - ®1) VDyalg)
SU(2)

:TrV*f

SU(

z)ngik/z(g) YDI/Z(g)®1] @1

=TrE(1)iTr Y
=TrY |

It is also straightforward to see that the thermodynamic limits of local
states obtained with boundary conditions of the tensor product type are
infinite-volume ground states whose local restrictions are all VBS states
determined by boundary conditions satisfying (2.4)-(2.6).

The next section is devoted to the proof of the uniqueness of the
solution for the ¢, of (2.5) in the case z< 4. In Section 5 we will then also
show that there is a unique solution for the p, such that (2.4) and (2.6) are
satisfied. Section 4 is devoted to the study of (2.5) in the case z>5 and
homogeneous boundary conditions, ie., the ¢, appearing in (2.3) depend
only on the level of x. Together, Sections 3-5 give the complete proof of the
following resuit.

Theorem 2.3. (i) z<4=uniqueness of infinite-volume ground
state: Let w be the infinite-volume ground state of the Hamiltonian (2.1)
defined in Proposition 2.2. For any set of boundary conditions of the
product type (2.3) {b,, | xeT?, neN} let w, , be the state on the volume
(x, n) defined in (1.4) using the E defined in (2.2). Then,

lim w, ., =
(x,m)1T*

(i1) z>=5=>o0ccurrence of Néel order: For z 25 there are two types
of ground states of the Hamiltonian (2.1) obtained with homogeneous
boundary conditions of product type:

(a) A translation- and SU(2)-invariant ground state with free
boundary conditions, ie., for xe T?, ¢, =1 and p, = the normalized trace
in (2.4)-(2.6).

(b) All other ground states with homogeneous boundary conditions
of product type have a nonvanishing Néel order parameter as defined in
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the introduction of Section 4. They break both the translation and SU(2)
invariance and can be explicitly constructed using the homogeneous
solutions of the compatibility conditions (2.4)-(2.6). These solutions are
given in Sections 4 and 5.

The translation-invariant solution (a) is unstable in the sense that any
other homogeneous product boundary condition will produce one of the
Neéel ordered ground states described in (b).

3. THE CASE z<4, PROOF OF UNIQUENESS

In fact in this section we are only going to study the solutions of (2.5):
we will show that in the case z<4 there is only one solution [up to a
trivial constant to be determined by (2.4)], namely ¢, =1 for all xeT=
Strictly speaking, to prove the uniqueness of the solution of (2.4)-(2.6), this
result has to be complemented with the uniqueness of the solution of (2.6)
for any given set {c,} and this we will do in Section 5 (for all z).

So the problem of this section is to prove that for z=2, 3, 4 the only
set {c,>0]xeT*} satisfying

[and

Cy=

(cxv HmH® Ry, (z—l))

consists of multiples of 1. Let us start by giving the explicit form of the
maps [, defined in the previous section, in a more convenient representa-
tion.

E: (,)®°~' > 4, and as a basis for .4, we choose {1,0,, g,,0.},
where the o, are the usual Pauli matrices. We denote the three Pauli
matrices put together in a vector by ¢ (0, =25%). [ is linear and invariant
under arbitrary permutations of the z — 1 factors of its argument [see (A2)
of the Appendix] and therefore the maps F are completely determined by
the following relations:

For z=2,
E(1)y=1
E(o.) = —3o.,
For z=3,
EI®1)=1

E(o-oc ® 1] ) = _%O’u
E(o,®0,) =10, 41
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For z=4,

FIR1®1)=1
Fo,1®1)= —ia,

These relations can be obtained using the information on SU(2)-inter-
twiners collected in the Appendix.

The ¢, € .#, are supposed to be positive and #0 (otherwise the state
cannot be normalized). It is therefore sufficient to prove the following
theorem:

Theorem 3.1. For z=2, 3, 4 and the E™ defined as in (1.3), and
any sequence (b,), b, = & . nux)=n Cx» With the ¢, e .4, positive and non-
zero, we have

EWo ... o EW(p
lim 2 — (b.) =1e.,
n— o0 TI'{E(I)O O[E(")(bn)}

Proof. As the c, are positive and nonzero, we can normalize them
such that Trc¢,=2. The positive ce.#, such that Trc=2 can be con-
veniently parametrized in terms of the Pauli matrices: ¢ =1+ x-¢ where
xeB,={yeR®| |yl <1}. The map £ can then be studied in terms of a
map F: (B;)*“~V > B, defined by

E(Cl(@ ®cz—1)

ﬂ"i‘[F(Xl,"'a Xz—l).(’.=2 [
TI‘{E(C‘1,---, Czll)}

where ¢;=1+x;-6. In terms of these F we have to prove that for an
arbitrary choice of vectors x;, , €By, n=1, 2, 3,., and 1 <i;<z—1, we
have

,,,,,

lim FoF®o ... oF"((x, ,))=0eR’ (3.1)

H— O

where the F™ are defined in analogy with the £ in (1.3). Note that F
inherits from E the permutation symmetry

F(X s X, 1) = F(Xp(1ysees Xz 1)) (3.2}
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We now prove (3.1) for the cases z=2, 3, and 4 separately. In each case
our strategy is to show that, provided ||x,|,..., [|x,_,| <r, we have a bound
[F(X,,e X, )l < BE(r), from which one gets

z—

,,,,,,,,,,

We then show that the iterates ()" (r) converge to zero.

=2

This is the case of the one-dimensional lattice; the result is well-known
from refs. 1 and 6. For completeness we formulate it here in terms of F. In
this case F is given by F(x)= —(1/3)x. Hence we have *(r)=1r/3, and the
iteration converges exponentially fast.

z=3
From the formulas for £ we easily compute F:
X;+ X,
F(X, Xp) = — > ——2
(x1, %) 3+x,°%X,
and hence

IF(x,, x )“2=”X1HZ+szl|2+2x1-x2
. 9+6X1'x2+(x1.x2)2

In order to maximize this over x,, X, with norm less than r, first fix x, and
the scalar product x,-x,. The latter constraint leaves x, free to change
within a plane. It is clear from the above expression that |F(x,, X,)||?
becomes maximal if we choose ||x,] =r, and similarly |x,[| =r. Hence, with
y=r"2x,*X, we have

2ri(14y) < 452

. .
“IF(XI’XZ)” _‘(3v+r2y)2\(3+r2)2
Hence
2r 2
3) — <=
Fo) 347273 ’

and convergence is exponentially fast.

z=4
We follow the same lines as in the previous case, the only difference
being that now the various estimates become more delicate.
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Using the formulas for E, it is casy to verify that F is now given by

(5+X, X)X+ (54X, X3) X5+ (5 + X, - X;) X4
534X, X+ X" X3+ X5 X3)

F(xy, X5, X3) = —

Again we can assume that |[x,]| 2 |X,|| = ||x;[. Furthermore, we adopt the
notation §; =X, * X5, §, =X, * X3, §3 =X, * X,.
We compute

(545)% 112+ 2(5+5,)(5 + 5,) 55+ cycl. perm.
25(3 45, + 5, +53)%

[F(xqs X5, Xs)“2= (33)

Notice that again we can restrict ourselves to vectors of equal length. To
see this, we use the fact that we can always find two vectors y, and y; such
that r =[x = liy.[ = |yl and s, =y,'y;, s =X, '¥3, and s3=X, Yy, and
we observe that

I?

IF(xy, Xo, X3) 17 < [F(X4, Y2, Y3)||2

Next we compare this situation of three vectors of equal length with the
case X, =X, =X;; we will show

IF(X1s Yo, Yol S HF(x, x4, x| (34)
from which one gets
5412
@) =
PR =rsse

The iterates of this function still converge to r =0, albeit at a much slower
rate: there is a constant C > 0 such that

C
B ()<

Let us finally prove (3.4). Define ¢, ¢,, ¢, 20 by

XX
2

g3=1— and cycl. perm.

and put { =g, + &, + &3, E =&7 + &35+ ¢£3, 7 =¢,8,85. The numerator of (3.3)
is then given by
P =r2(225 — 50¢) + r*(90 — S0L + 10¢> — 10¢)
+ r8(9 — 80 — 2& — 6n + 3E%)
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and the denominator by
Q=25[9+6r*(3-0)+r'(3-0)*]
Proving (3.4) then amounts to showing that

25P _25410r% 41
r?Q - 142244
or equivalently we have to show that
g(r’y=250+ (56 =502 r* + (3n — 260 + 11E+ ) r*
+ (TE+6n—30)r*+(E+3n+—2)r®
=0

Note that coefficients of  and & are positive. So, using 7>0 and 3¢ > (3,

we have
2
2BU) 951750 3 30 25— 27— )
((1=r7)

=h(r? )

As r*<1, the coefficient of { in h(r?% () is negative; furthermore, as
0< (<6, it suffices to observe that

h(r?, 6) =754+ 15/ 4+21r* + 975> 0

to conclude the proof. ||

4. NONUNIQUENESS IN THE CASE z>=5

In this section we will restrict ourselves to homogeneous boundary
conditions. When more than one homogeneous solution of (2.5) is found,
one can immediately see that there is also an infinite number of
nonhomogeneous solutions. This fact was already pointed out in ref. 1.
Working with the subset of homogeneous boundary conditions is
reasonable because of the n-symmetry of the Hamiltonians H, ,, ie.,

ngca)(H(x,n)) = H(x,n)

with the n{” defined in (1.1). Also, the completely positive map E is
permutation invariant in the sense that

EX®ny(Y))=EX®Y)
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and the E™ satisfy certain covariance relations under “rotations.” It is
therefore natural to look at weak limits of ground states which are deter-
mined by homogeneous boundary conditions. By this we mean that the
boundary spins belonging to the same level in the tree are put into the
same state. So we still allow for dependence of the boundary condition on
the level. This is important because we are especially interested in the
question of whether there are solutions which exhibit Néel order: ie.,
whether there are states w, , , g€ SU(2), which satisfy

a)g,i(Dz/Z(g)* Schz/Z(g)) = fn(~1 )d(o’x)

for all xe T°. Remark that on a Cayley tree

( _ 1)d(x, ¥ — ( _ 1)N(x)~ N(y)

d(x, v) being defined as the number of steps in the shortest path over
bonds connecting x and y; N(x) is the level to which x belongs, that is,
N(x)=d(x, 0).

So, our problem is to determine all the solutions {c,} of (2.5) such
that the ¢, depend only on N(x). In other words, we are looking for
sequences (c,), ¢, € ,, positive and nonzero, such that

E(®cy 1) Y=c, forall n=0 (4.1)

This analysis will be done for arbitrary z>2 and we will see that non-
uniqueness occurs iff z> 5. The fact that there is always at least one
solution was demonstrated in Proposition 2.2.

Proposition 4.1. If (¢,)_,, ¢, =0, satisfies
Cn41 ZE((®cn)z_l)

then there exists a ge SU(2) and a sequence (u,) of strictly positive
numbers such that

L (= 1)+ (1) 0
0 =1y g —ny) Pl
(4.2)

Cp= ﬂnD1/2(g)* (

where the o, e [0, 2] satisfy
tNa,)=2—a, 4y
with 1@: [0, 2] - [0, 2] defined by

P2b (k) X2 —x)y k!

[(Z) =
x) z+1 i lxF2—x)7r !

4.3)



956 Fannes et al.

Proof. Define a (nonlinear) operator T'*) by
T My~ My ¢ T (e)=fP(c) E(®c) ™)

where f*) is a scalar function which will be specified later. Any positive
ce .M, can be diagonalized with a unitary of the type D,,(g), g€ SU(2),
and by the intertwining property of ¥ we have

0 0
T(Z)(Duz(g)* (g ﬁ) Dl/z(g))=D1/2(g)* T® <<g ﬂ)) D1/2(g)

Using the formulas for the Clebsch—-Gordan coefficients given in the
Appendix, it is easy to verify that

(oG ) (70" won)

with g7(a, f)= g“(B, «) and

g p=Y ¥

X |<1/25 1/2 | 2/2’ 1/295 1/2’ Ma mMy,..., mzfl>|2

x o (ZiT it 12} pla— 1= X0 ik 1/2))

_241 2 Z=1\ pe1
_,Eo__-_(z“'l)!( A )aﬁ (z—k) k!
= 2 Zil (z—k)akpz—1-k
z(z+1) /=,
and also
2 z—1
29)(a, B)=Z(Z+ 1)20 (k+1)oakp—t—*

It is now convenient to choose the scalar function /) in the definition of
T as follows:

FO B)=2{gP(e, p)+ g (e, $)}
lz-l -1
={_ Z Ockﬁz_lk}

Z k=0
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The operator T is now completely described by

e ((g 2Ea>) =<Z(Z;(a) 2—;32’(@)

1 a)= (e, 2— o) g e, 2—t)

where

It is then clear that t:[0,2]—[0,2] and that it has the following
symmetry:

(P2 —a)=2—1"a)

Using this symmetry property, one can write the ¢, as stated in the
theorem. |

It is now obvious that we have to study the asymptotics of the
dynamical system on [0,2] given in (4.2)-(4.3) or equivalently the
asymptotics of (o¢”))". We first study the function ¢ in detail (Fig. 2).

Proposition 4.2. let z be an integer >2 and define for all
xel[0,2]

2 it z—k)x*Q—xy 1 F

19x)=
—1 Lk —1—-k
z+1  YiTox"(2—x)
2__
1
+(2)
#3)
+(4)
—
™)
T =
0 1 2

Fig. 2. Graph of the functions ' for z=2, 3,4, 5.
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Then ¢#): [0, 2] — [0, 2] has the following properties:

(a) ¢ is monotonically decreasing.

(b) ) is concave on [0, 1].

(c) 1t is convex on [1,2].

(d) ¢ is analytic.

(e) t¥9(2—x)=2—19(x) for all xe[0,2].
() 190)=2z/(z+ 1), (9(2)=2/(z+1).
(g) O()=1.

(h) 1@(0)=1®(2)= —2/(z+1).

() ()= —(z—1)3.

(j) We have

1 if x=1
Hm A(x)=<{2 if 0<x<1
e 0 if 1<x<2

and for all xe [0, 2] this limit converges monotonically.

Proof. Only the properties (a), (b), and (¢) really require a proof.

(a) Monotonicity. We start by making the following substitution:
r={2—x)/xe [0, + 0]. One then has

z4+1 zr*t —(z4+ 1) PP +1
19 (x) = = - 44
(x)= () == (44)
As
dr 2
—_—= ——<
dx x* 0
it is sufficient to prove that
dg
—= = ’2 0
dr

to obtain the monotonicity of t@. One first checks that

(r— 1 (F = 1) g'(r)
={(rz—1+r2*2+...+1)2—22r2\1}(r"1)2 (45)
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The proof will be finished if we show that for all z>=2, r >0,
(rz—1+rz~2+ +1)2>erz-1 (46)

This we do by induction on z.

For z=2, (4.6) follows by the concavity of the square root function.
Suppose that we have the inequality for z. In order to obtain it for z+ 1,
it is sufficient to show that

rPz(z+1)r?—zre 2

which is equivalent to
z
—+yzz+1
y

for all y>0. The latter can be seen by observing that the function
yey°+z/y is convex for y >0 with a unique minimum at y=1.

(b, ¢c) Concavity—convexity. Starting from (4.4) and (4.5), we verify
that

d A1
—2g(r) o= {r=1) 2 =2 = 1) 2+ 17

Then we calculate the second derivative:

z4+2d%"% d dr\ dr z+2 r+1
—_— = 2 — ‘ —_—] —= —-—-———————h
2 ae et )dr<g(r)dx> & T o)

with A(r) defined by
h(r)=4(1+r+ - +r 1)
-2 -t C+ )P+ (2 D)r4z—1)
We show that for all z>2 and all » >0, A(r) > 0. We develop a similar but

slightly different argument for z even and z odd. Therefore, for n=1, 2,...,
define

hy(r)=5=; h(r) for z=2n+1

23n

1
h2,n( ) 4r A.3n—1/2 h(r) for z=2n

822/66/3-4-18
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With these definitions we have
By (F)=20r""4r " e )
—n+ 1) " (- D+ (a4 D A
N e e e A &
—nH{@2n—1)r" "2+ 2n+ 1) "2
+ 2+ ) r T2 2n—1)r

We have to show that these two functions are positive.
1. We first treat h; . For any k£ >0 define a variable x, by

x0=1

—k

Xp=rf+r for k=1

All the x, are considered as functions of x,. Because of the symmetry
hy (r)="h, ,(r~"), it is sufficient to consider r>1 and this makes r < x;
and x; > x;, k>1, good substitutions. Now h,, can be written as a
function of n + 2 variables:

hya=2Xe+x+ - +x,)° —Q2n+ 1) [nx,,, +(n+1)x,]

As h; (1)=0, it is sufficient to prove

—h, ,=0 forall x,=0
dx;

First check that x, =2 for k=1 and that

k(Xe_ 14 X3+ -~ +x5)  for kodd
= k(x4 xp 3+ - 4+ xp) for k>0 andeven
0 for k=0

i
dx,

All this permits us to obtain the estimate

L honlor) = TC—
dx1 hl,n(xl)'—6(x0+x1+ +Xn) (dx1+ +dx1)
~nn+1)2n+ D)(xe+x,+ - +x,)
2 (xot+ - +x,,)(2n+1){6 > kz—n(n+1)(2n+1)}

k=1

=0
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2. To prove h, , >0, we use similar reasoning. We need an additional
set of variables

Ye=rT V2R 2 0 for k=1,2,3,.

Again h, (r)=h,,(r "), h, ,(1)=0, and for all r>1

d n—1
() =30t ) T (R
V1 o
Y dy
—n2{2n—1 2 (2n+1) =2
( ) dy, ( dy,
n—1
=3(yi+ - ) Y, (P =k x,
k=0

~ n*2n+1)2n—1) yi(y;+ - +y,)

n—1 n2
> (i 4 - +yn>{6n[ 5 (nZ-kz)—ﬂ
k=0

— n*(2n+1)(2n— 1)}

=0

where we have used the relations

%=(2k—1)(x0+---+xk_1) for k=1,2,.
dy,

dyl dyn "ot 2 2

dy, dy, k§=:0 ‘

and the inequalities
X =2 for k>1
xO = 1

YeZVe12z -2y 20

This concludes the proof of the convexity property of 1. |

As a consequence of the properties (a)-(j), we have a quite precise
idea of the graph of 1*): see Fig. 2.
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Proposition 4.3. The solutions a e [0, 2] of
N a)=2—u (4.7)
are the following:
(i) If 2<z<4, then a=1 is the unique solution of (4.7).

(i) If z=5, there are exactly three solutions: ¢, 1, and 1 — &,, where
0 <ay < 1. Furthermore, o, is monotonically decreasing to 0 for
z tending to infinity.

Proof. The proof is a straightforward application of the properties of
the function ¥ which are proved in Proposition 4.2. |

In the next proposition we collect our results concerning the
asymptotics of (o#¥)". For the case z <4 the stated properties are actually
implied by the results of Section 3.

Proposition 4.4. Define the asymptotic invariant set of the
dynamics (o))" as follows:

C.= ) (1) ([0,21)

nz=0

Then
C,={ae[0,2] | tP(ap) =2 — ot}
= {ao, 1, 2— ao}
where a, satisfies (4.7). In particular, C,=C;=C,={1} and for z =5, C,

contains exactly three points. Furthermore, (-'*)" converges uniformly to
a stationary point or a limit cycle of period 2, ie.,

lim sup inf [f“(a)—oy =0
n— oo ae[0,2] ape C;

The limit cycle of period two occurs when z> 5 and corresponds to ..., &g,
2—0ag, gy -

Proof. Define A4=a—1 and for all z=2, 4= (1+4)—1; it is
then easy to derive the following formulas:
1
for z=2 A=—-4
3
2
A —
3+ 47
A*+5
54*+5

for z=3 A=

for z=4 A= —4
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Using this information, one immediately obtains for z=2, 3 that there
exists a y >0 such that for all >0

(ct@) ([0, 2]) = [1~e™™, 1+e™ "]

the results then follows and C= {1}.
For z=4, also C= {1}, and one has that

1= ()" ()] < [1 = (o£4)" (0)]
As
lim (ot“)" (0)=1

the uniform convergence follows and C= {1}.

For z>35, it is easy to see from the properties of ), proved
in Proposition 4.2, that there is uniform exponential convergence to a
limit cycle of period 2, for all initial conditions #1. This cycle is deter-
mined by the unique solution aae(0,1) of #(xg)=2—a, So
Cz = {0(0, 1> 2‘(10}' I

To summarize, we can conclude that the solutions of (4.1) are given
as follows:

(i) If 2<z<4, there is, up to a normalization factor, a unique
solution: ¢, =1 for all n.

(i) If z =5, there are two types of solutions: (a) the translation- and
SU(2)-invariant solution ¢, =1; and (b) solutions that break the transla-
tion and SU(2) invariance. They are determined by formula (4.2) with «,
equal to one of the nontrivial solutions of Eq. (4.7).

A more detailed analysis of the behavior of the functions ¥ easily
shows that in the case (ii) only the symmetry-breaking solutions are stable.

5. COMPLETING THE PROOF OF THEOREM 2.3

In Sections 3 and 4 we have found various homogeneous solutions of
(2.5). Remember that homogeneous means that ¢, depends only on N(x).
In the case of uniqueness, z <4, the solution for the {c,} is homogeneous.
In the case z > 5, we found nonuniqueness within the class of homogeneous

{c,}. Given such a homogencous {c,}, we now want to solve Eq. (2.6) for
the p.:

px(E(cN(x)+l® N +1® Y®CN(x)+1® "'cN(x)+1))=va(k)(Y) (5.1)

kth place
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From the permutation invariance of £ and the homogeneity of the
boundary conditions, it is easy to see that (5.1) implies that p, , ,, is inde-
pendent of k. Therefore, the p, only depend on the level N(x) of x:

Px=Pnex)

In Sections 3 and 4 we obtained the solutions ¢, of (2.5). The
constants u, can be calculated using the renormalizing function f® which
appears in the proof of Proposition 4.1:

o= T [ ()"

= [I fPC—a)t I [fPla)
m=1,m odd m=1,meven
1 1—a, " .
—_—— f 1
- <22 (2—0(0)2—05(2)) %
1 if ay=1

With the same choice of «, the ¢, are then given by

B « T+ (=1 (g —1) 0
Cn—ﬂnDuz(g) ( 0 1_(_1),,“(%_1))1)1/2(&’)

(5.2)
We now solve Eq. (2.6) to obtain the p,,.

Proposition 5.1. The p, which satisfy (2.6) are given by
pn = vnés(n)

where &(n) =0 for n even and e(n)=1 for n odd. 6, and &, are the density
matrices determined by

0
0o= Dl/z(g) (r(go) 1— r(oco)> D1/2(g)*
1-— 0
I ] AN LR

r(og) € [0, 1] is uniquely determined by imposing that for all Ye .4,
SAE(Y® (®ci_,)72))=48,_(Y)
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where ¢, and ¢, are given in Proposition 4.1 (forgetting about the g,,):

o= 0 %g

and a,e[0,2] is determined in (4.7); ge SU(2) and «, are the same as
those which appear in (5.2). We also have

- 0(2—(X z 1 k—ﬂfl

and the normalizing constants v, are
Vy = {ﬂnao(co)} B

Proof. The dependence of the solutions on the group element
ge SU(2) is easily determined; so we can suppose that g is the neutral
element and we are left with the following set of equations to solve:

So(E(b® (®¢1)* %) =14,0,(b) (5.3)
51 (E(B® (®co) ™ 7) = Agdo(b) (54)

in the sense that we have to find 8, and §, satisfying (5.3) and (5.4) for all
be . #, and with 1,>0 and A, >0. The ¢, and ¢, are given in Proposi-
tion 4.1 (up to normalization).

Now, (5.3)}-(5.4) is a linear equation for (d4, d,), and it is not difficult
to derive that it has a unique positive solution. In fact (5.3)-(5.4) can be
solved explicitly. Consider for

a 0
”‘(o ﬂ>

Ly My—> My b—EB®(®Rc)2)

the linear operator

Define also the automorphism

0 1 01
T My > M br——»(l O>b<1 0>
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Then (5.3)}-(5.4) can be written as
0o(Lc, (b)) =4,0,(b)

51(Lr(cl)(r(b)) = 2o00(b)
Observe that

L (1(b)) =7(L.,(b))
Therefore, we can rewrite the equations as

do(L,,(b))=2,06,(b)

01°7(L,,(h))=7o(00°T)(D)

The unique solution (d,, §,) will therefore satisfy 6, =9,01, 0, =d,°7, and

d1((zoL,)(b)) = 400,(b)

The diagonalization of (1o L, )*: #F — 4 ¥ is given as follows:

1. One negative eigenvalue, doubly degenerate:

2 2‘2' z—2—k
A_(a, = —mkgo (z—1 —k)(k+ 1)0(16[3

0 1 00
(0 0) and <1 0)
2. A positive eigenvalue
1=14(8(a, B)+ 8(B, ) — 3{[8(o, B)— (B, 2)1* + 44 _(a, B)*}*2

where

with eigenvectors

2 5k 1)k +2) kg2

2 D=6+ ) &,

with a nonpositive (diagonal) eigenvector.
3. A positive eigenvalue
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with a positive eigenvector of the form

51:(““6[3) l_r?a, ﬁ)>

where r(a, ) is such that for all e (0, 1), 1/2<r(x, 2 —a) < 1. Of course,
r(z, B) can be calculated explicitly if necessary.
Furthermore, one has that

Ao>71  and  Ag>|d_|

This immediately shows that the positive solution &, is unique if ¢y€ (0, 1)
and by symmetry also when a,e (1, 2). The case o, =1 is straightforward
to check. |J

Theorem 5.2, Within the class of boundary conditions we studied,
in the thermodynamic limit, the model (2.1} (i) does not exhibit Néel order
in the ground state if z=2, 3, 4, and (i) has Néel ordered ground states
whenever z > 5.

Proof. The only fact that still remains to be checked is that the Néel
order parameter does not vanish when z>5. In order to compute this
parameter, we have to insert the information that is contained in Section 4
and in Proposition 5.1 into the definition (1.4) of the state. Doing so, we
find

ng = PO(E(SZ®C(?(ZV1))

Taking o, € (0, 1), there is a constant 0 <r < 1/2 such that

(r 0
Po= 0 1—r

and it is also straightforward to determine

E(S*® (co)®¥~ 1) = (SO* ao )

with [s_ | <|s_|. This implies |ny| >0.

Remark 5.3. For all z>2 the symmetric ground state is obtained
by taking p, =3Tr and b, ,,=1 for all xe T~ and all ne N. The two-point
correlation function is then given by

’ (z+2)? 1\V
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In fact, one observes this kind of exponential clustering for arbitrary local
observables.

Proof. According to formula (1.4), we have to compute
ITr E(S* @ LY (E(SFR12F V) @186 -2)
with, for all Ye .4,,
L) =EY®19¢ )
Using formula (A9) of the Appendix, we have

2

[E(Sﬁ®1]?(z'”)=z—:——ﬂ (5.5)

where the J? are the generators of the two-dimensional irreducible
representation of SU(2). Using (A10), we have

L(J?) = —%J” (5.6)
and furthermore

E(S*®JFQ1$7~2)= —5 1, (5.7)

9717

Combining (5.5)—(5.7), we get the desired result. J

Conjecture 5.4. In the cases z=3 and z=4 the VBS state con-
structed above is a pure state of the algebra .&/,. with nonvanishing
entropy density (calculated with the local structure of the tree that we
adopted in Section 1).

APPENDIX

For convenience we list here some useful “generalized” Clebsch—
Gordan coefficients. The j’s are half-integers, the corresponding m’s and M
range from —j to j in integer steps, and k£ > 1 is an integer, indicating the
number of factors D; that are considered. D; is the (2j+ 1)-dimensional
irreducible unitary representation of SU(2). The formulas are taken or
derived from ref. 8. We have

<k.]’ M | j’---a ]a my,..., mk>

_s (222
M,m+ - +mg j_m1 j_mk kj——M
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For j=1/2 this becomes
<k/2: MI 1/2a: 1/2, My, mk>

(kj2+m,+ - +m)! (kf2—my — - —my)I]7
=5M,m1+--»+mk k'

For clarity: these are the coefficients in the k-fold tensor product basis of
the representation space of (®Dj)k of the 2kj+ 1 vectors supporting the
component D, in the irreducible decomposition of (®D,)".

Let V, ; be the intertwining isometry between D, 1), ® ( ®Dj)" and
D; (which is unique up to a phase), ie.,

D1y (8)®(®D) (g) Vi ;= Vi, ;D;(8) (AD)

for all ge SU(2). The invariance under permutations of the m;, i=1,.., &,
is immediately visible. This entails, with Q, ; the orthogonal projection
onto the permutation symmetric subspace of (® C¥*')¥, the relation

(1 i +1D Qk,j) Vi = Vk,j (A2)
We also need, for j; = j,,

Ji—Jas M o, jasmy, my )

— 1y {Ez(jl —j)+1]! (2j2)!}1/2
(2/; +1)!

=5M,m1+mz(
x{ (ot m)! (jy —m,)! }1/2
(J2+m) (Ja—m ) (i — o+ M) (jy — Jo— M)
In particular, for j, —j, =1/2,
YL M j, j—=1/25my, my )

/2
=9 (_1)]—1/2+mz|:_1___:’1
Mot ma 2+ 1)/

(j+m) (j—my)! }1/2
X {(j— 12+ m)! =172 —my)! (12 + M) (1)2 — M)

With this information one readily computes the CG coefficients which
determine ¥, | ,,,, used in the proof of Proposition 4.1:

125 m | 22, /2,y 1)2: My my ey m,_ (>

=Y UY2im|z/2, (z—1)/2; py, pio )

My 42

X <Z/2, (Z_ 1)/2’ Uy, o ! 2/27 1/25> 1/27 M9 Mg 5eess mz——l>
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={1/2;m|z2, (z— VY2, M, m + - +m,_ >
x{z=—D)/2;mi+ - +m,_ | 1/2,.,1/2; M, m,..,m,_ >

= bt e pme_y(— 1) ETDREIE e (7 4 1))
x[@2+m—my— - —m_ N (2—m+m+ - +m, )]

We now derive some relations that are useful in the calculation of
correlation functions of VBS states on T2

By taking derivatives of (A1), we obtain the intertwining property of
the isometry V. ; expressed in terms of the generators of the representa-
tions. Denote by {S*|a=x, y, z} the generators of D, and by {J*|a=
X, y, z} the generators of D;; then, with s=(k+1)j, for a=x, y, z,

(S*@ (@ ) + 10 1 @ ® (@5, 1) !
+ ...ﬂ25+1®(®1]2j+1)k41®']a) Vk,j= Vk,jJu

Up to trivial phases, by the uniqueness of the subrepresentations, ¥, ; can

be written as
Vk,j = Wk,j U

s, ki, j

where for |s' —r| <I<s'+r, 1, s€3N, and L s'+reN, U, is the inter-
twining isometry satisfying

(Ds’ ® Dr) Us’,r,l= Us’,r,[Dl
and for jeiN, keN,, W, ; is the intertwining isometry satisfying
(®D) W,y ;=W Dy
Denote the generators of the representation D, by {K*}; then
(P (@15, ) '+ "'1]2j+1®‘]a(®'n2j+1)k72
+ (@1 )T R W =W K
and by the permutation symmetry of the k factors

1

T @ (@15, ) Wk,,:']; W K (A3)

For the U,,,, denoting by L* the generators of D, and by R* the
generators of D,,

(Sa®ﬂ2r+1+ﬂ23+l®Ra) Us,r,l: Us,r,ILa (A4)
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We want to show that there exists a AR such that, for «=x, y, z,
;(,(r,l(Sa®1]2r+l) Us,r,l:)'L“ (AS)
Ut (1 1 ®@R) U, =(1—2) L* (A6)

The 8% R* and L* form irreducible representations of the Lie-algebra
su(2), and satisfy

[U:r,l(Su®ﬂ2r+1) Us,r,la Lﬂ] = U:r,l([Suy Sﬂ] ®ﬂ2r+ 1) Us,r,l
22 184, 5,y U:r,/(Sy®ﬂ2r+1i) Ui,
7
[U:rl(ﬂ 25+ 1 ®Ra) U:,r,la Lﬂ] = U:r,l(ﬂ 2s+1® [Raa Rﬂ]) Us,r,l

= Z igoz,/}’,]/ (];’:r,[(T| 2s+1 ® R)') Us,r,/
Y

Together with (A4), this proves (AS) and (A6). Next we calculate the value
of 4. Note that 8?=s(s+ 1)1, R®=r(r+ 1)1, and L*=/(/+ 1)1, where
S2=3".(S*)? etc. Also define SQR=Y, S*® R* Then, using the inter-
twining property twice, we find

SRARU,,,=3{ll+1)—s(s+1)—r(r+ D} U,,, (A7)
From (AS), using again the intertwining property, we obtairl
U¥ SQRU,, = {U(I+1)—s(s+1)} 15, (A8)
One can now find A from (A7) and (A8):

)_£+ls(s+1)—r(r+1)
202 I(I+1)

If s=2z/2, r=(z—1)/2, and /= 1/2, with z > 2, this becomes

_z+2

A==3

Using this result together with (A3), one can check that, with k=z-1,
Jj=12,and V=V, ),

VES*®(®1,) 1V
= :;2,(2- 1)/2,1/2 w*_ 1,1/2(Sa® (®1,)°~ 1) W, _ i1n Uz/2,(z~ 1y/2,1/2

= U;;Z, (z—1)/2, 1/2(50{ ®1,) Uz/Z, (z—1)/2,12

=§—:—2—J“ (A9)
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Analogously,

V¥, @I ®(®1,)7 2V

= _Z __1 Uz*;l,(zf 1)/2, 1/2(1] +1®K%) U, (o - 1)/2,1/2

1
S(1-4)7

z—

1
=—=J A10
. (A10)

Using the SU(2) symmetry, one easily checks that
VS @ JF @ (®1,) 2 V=0 if a#p (A11)
From (A7) and (A3) one gets

z+2
4

V* S RJI®(®1,)7 2 V= — 1,

and combining this with (A11), we find

z+2

V*S*@JF® (®1,) 2 V= —5%‘,-5—

1
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